Extended Solutions

1.1 Sets and Groups of Numbers

1A. The fraction x / y does not have to be an integer, natural number, or whole number. An example would be $2 / 5$.

2D. On the test, if a number is not π or an imperfect square root, it is rational. Thus, 7.77 is rational. The number 7 is natural and rational. The number 7/7 = 1 is a natural number and rational number.

3D. Choice $A(\sqrt{12})$, Choice $B(\sqrt{6})$ and Choice $C(\sqrt{18})$ are imperfect square roots and are irrational. Only Choice D $(\sqrt{36}=6)$ is rational.

4C. The fraction simplifies to $5 \pi /-1 \pi=5 /-1=-5$. The number -5 is an integer and rational.

5B. An easy way to solve the problem is to plug in a number for x. We will let $x=5$, which makes $\sqrt{5}$ irrational. Multiplying $(\sqrt{5} \cdot \sqrt{5}=5)$, subtracting ($\sqrt{5}-\sqrt{5}=0$), dividing by itself $(\sqrt{5} \div \sqrt{5}=1)$, and raising the root to the second power $\left(\sqrt{5}^{2}=5\right)$ makes the answer rational. Adding the root by itself $(\sqrt{5}+\sqrt{5}=2 \sqrt{5})$ keeps it irrational.

6C. A real number is either irrational or rational. It cannot be both.

7E. Choice $A(\sqrt{55})$ and Choice $B(\sqrt{20})$ have imperfect square roots as members which are irrational numbers. Choice $C(\sqrt{-9}=3 i)$ and Choice $D(1 i)$ have imaginary numbers. To be rational, a number must be real number. All of choice E's members are rational $(\sqrt{4 / 9}=2 / 3)$.

8A. The number pi (π) does not go on forever in a pattern. It is not rational. It is also not an integer or a natural number.
$\mathbf{9 C}$. The number $(15 / 4=3.75)$ is not π or an imperfect square root. It is rational. The fraction does not divide evenly, so $15 / 4$ is not an integer or a natural number.

1.2 Factors, Multiples, Primes and Prime Factorization

1E. The factors of 24 are $1,2,3,4,6,8,12,24$. Adding all the factors, you get 60 .

2A. The prime factorization of $25,200=2^{4} \times 3^{2} \times 5^{2}$ $\times 7^{1}$, so $A+B+C+D=4+2+2+1=9$.

3A. The prime factorization of $264=2^{3} \times 3^{1} \times 11^{1}$. The number has 3 distinct prime divisors: 2,3 and 11 .

4D. The multiples of 12 are $12,24,36,48,60,72,84$, $96,108,120,132,144$ and so on. The number 92 is not a multiple of 12 .

5C. The factors of 36 are $1,2,3,4,6,9,12,18,36$. The number has 9 distinct factors.

6C. The first 5 prime numbers are $2,3,5,7,11$. The sum of the numbers is $2+3+5+7+11=28$.

7C. If A is divisible by 15 and B is divisible by 6 , multiplying the numbers together gives you a number that is divisible by 90. ($\mathrm{A}=? \times 15, \mathrm{~B}=? \times 6$, so $\mathrm{A} \times \mathrm{B}=? \times 15 \times 6=? \times 90$.) In other words, $\mathrm{A} \times \mathrm{B}$ will have all the factors of 90 . The only answer choice that is not a factor of 90 is 12 .

8A. There are only 2 "emirps" that are bigger than 20 and less than 50 . Those numbers are $31(31 \leftrightarrow 13)$ and 37 ($37 \leftrightarrow 73$).

9D. The product $64 \times 243=32 \times 2 \times 81 \times 3$. Thus, $64 \times 243=2^{5} \times 2^{1} \times 3^{4} \times 3^{1}=2^{6} \times 3^{5}$.

10B. Forty is the only number that is a multiple of 4 $\{4,8,12,16,20,24,28,32,36,40 \ldots\}$ and a multiple of 5 $\{5,10,15,20,25,30,35, \underline{40} \ldots\}$.

11B. To find multiples of a number, you skip count by that number. We can keep adding 6 to $(x+2)$ until it matches one of the answer choices. The answer $(x+2)+6+6 \rightarrow(x+14)$ is also a multiple of 6 . You can also plug in a number for x to make $(x+2)$ a multiple of 6 and then check the answers for a multiple of 6 . For example, if we let $x=10$, then $(x+2) \rightarrow(10+2)=\underline{12}$. When $x=10$, the only other choice that also changes into a multiple of 6 is B $(x+14) \rightarrow(10+14)=\underline{24}$.

12A. The prime factorization of $154=2^{1} \times 7^{1} \times 11^{1}$. Thus, $\mathrm{A} \times 154=7^{8} \times 11^{4} \times 2^{1} \times 7^{1} \times 11^{1}$, which equals $2^{1} \times 7^{9} \times 11^{5}$.

13A. The factors of 39 are $1,3,13,39$. The 2 nd largest factor is 13 . The factors of 45 are $1,3,5,9,15,45$. The second smallest factor is 3 . The sum is $3+13=16$.

14E. Choice I is false. Adding two primes is not always odd ($3+5=8$). Choice $I I$ is false. Adding two primes is not always even $(2+3=5)$. Choice III is false. Adding two primes is not always prime ($5+7=12$). None of the answers are always true.

1.3 Greatest Common Factor (GCF) and Least Common Multiple (LCM)

1A. The GCF of 30 and $15=15$. The LCM of 20 and 10 $=20$. Therefore $x-y=15-20=-5$.

2D. Choice $A(\mathrm{GCF}=3, \mathrm{LCM}=15)$, Choice $B(\mathrm{GCF}=$ 5, $\mathrm{LCM}=15)$, Choice $C(\mathrm{GCF}=3, \mathrm{LCM}=30)$ and Choice $E(\mathrm{GCF}=3, \mathrm{LCM}=60)$ are all incorrect. Only Choice D has a GCF of 3 and an LCM of 45 .

3A. Using factor trees, $36=2 \times 2 \times 3 \times 3$ and $42=2 \times 3 \times 7$. The number $90=2 \times 3 \times 3 \times 5$. One 2 and one 3 can be crossed off all the trees. The GCF $=2 \times 3=6$.

4D. The denominators are 15,25 , and 10 . Finding the LCM using prime factors, $15=3^{1} \times 5^{1}$. In addition, 25 $=5^{2}$ and $10=2^{1} \times 5^{1}$. The LCM $=2^{1} \times 3^{1} \times 5^{2}=150$. The LCD is 150 .

5C. We are looking for the GCF of 1360 and 1480. Using factor trees, $1360=2 \times 2 \times 2 \times 2 \times 5 \times 17$ and $1480=2 \times 2 \times 2 \times 5 \times 37$. Three 2 s and one 5 can be crossed off the trees. The GCF $=2 \times 2 \times 2 \times 5=40$.

6B. We need to find the LCM of the times at which the prizes are given out. The LCM of 12,15 and $40=120$. All the prizes will be given out at the same time 120 minutes or 2 hours later, which will be 10:00am.

7A. Using factor trees, $56=2 \times 2 \times 2 \times 7$. Also, $72=$ $2 \times 2 \times 2 \times 3 \times 3$ and $75=3 \times 5 \times 5$. There is no prime factor that is on all three trees at the same time. The GCF = 1. (1 divides evenly into all numbers.)

8E. Choice $A(\mathrm{GCF}=4, \mathrm{LCM}=48)$, Choice $B(\mathrm{GCF}=6$, $\mathrm{LCM}=36)$, Choice $C(\mathrm{GCF}=2, \mathrm{LCM}=144)$ and Choice $D(\mathrm{GCF}=8, \mathrm{LCM}=48)$ are all incorrect. Only Choice E has a GCF of 6 and a LCM of 72 .

9D. The denominators are 14,12 , and 10 . Finding the LCM using prime factors, $14=2^{1} \times 7^{1}$. In addition, 12 $=2^{2} \times 3^{1}$ and $10=2^{1} \times 5^{1}$. The LCM $=2^{2} \times 3^{1} \times 5^{1} \times$ $7^{1}=420$. The LCD is 420 .

10B. Two numbers are coprime if their GCF is 1. Choice A (GCF = 3), Choice C (GCF = 2), Choice D ($\mathrm{GCF}=7$) and choice $\mathrm{E}(\mathrm{GCF}=3)$ are all incorrect. Only Choice B has a GCF = 1 and are coprime.

11A. The denominators are 6,15 , and 75 . Finding the LCM using prime factors, $6=2^{1} \times 3^{1}$. In addition, $15=$ $3^{1} \times 5^{1}$ and $75=3^{1} \times 5^{2}$. The LCM $=2^{1} \times 3^{1} \times 5^{2}=$ 150 . The LCD is 150 .

1.4 Fractions and Mixed Numbers

1B. The factors of 24 are $1,2,3,4,6,8,12,24$. The factors of 36 are $1,2,3,4,6,9,12,18,36$. We are trying to make fractions that equal $5 / 10$ or $1 / 2$. Four such fractions can be made ($1 / 2,2 / 4,3 / 6$ and $6 / 12$).

2A. The largest fraction will have the biggest numerator (biggest x) and the smallest denominator (smallest y). The biggest value of x is 15 and the smallest value of y is 7 . The largest value of the fraction is $\frac{15-3}{7+5}=\frac{12}{12}=1$.

3C. Choice A is true. It shows adding fractions with the same denominator. Choice B is true: $1+\frac{y}{w}=\frac{w}{w}+\frac{y}{w}$ $=\frac{w+y}{w}$. Choice D is true: $\frac{w}{y}-1=\frac{w}{y}-\frac{y}{y}=\frac{w-y}{y}$. Choice E is true. You can cancel the w 's and get just y. Choice C is the only answer that is false. If this all seems confusing, just make up your own numbers for w, y and z. For example, if you let $w=1, y=2$ and $z=3$, all the choices will come out true except Choice C. $\left(\frac{1+2}{1}=\frac{3}{1}=3\right.$. That answer is not equal to y, which is 2.)

4D. In the problem, they are looking for the fraction that is halfway between $1 / 2$ and $7 / 8$. First, add the fractions: $1 / 2+7 / 8=4 / 8+7 / 8=11 / 8$. Now divide the answer by two: $11 / 8 \div 2=11 / 8 \div 2 / 1$ $=11 / 8 \times 1 / 2=11 / 16$.

5A. To solve the problem, we can turn the top and bottom into a single fraction and divide.
TOP: $1 / 2+1 / 3=3 / 6+2 / 6=5 / 6$
BOTTOM: $2 / 1-1 / 4=8 / 4-1 / 4=7 / 4$
Now divide the top fraction and bottom fraction: $5 / 6 \div 7 / 4=5 / 6 \times 4 / 7=20 / 42=10 / 21$. A second way to solve the problem is multiply the entire fraction by the LCD of all the fractions, which is 12 : $\frac{12(1 / 2)+12(1 / 3)}{12(2)-12(1 / 4)}=\frac{6+4}{24-3}=10 / 21$.

6B. Madison drunk 3/7 of the container which means $4 / 7$ of the juice is left over. Now it needs to be divided into 5 cups. Thus, $4 / 7 \div 5=4 / 7 \div 5 / 1=4 / 7 \times 1 / 5=$ 4/35.

7D. Freshmen: $3 / 8$ of $1320=3 / 8 \times 1320=495$.
Seniors: $2 / 11$ of $1320=2 / 11 \times 1320=240$. Adding
up the freshmen and seniors you get $495+240=735$.
8E. In the problem, they are looking for the fraction that is halfway between $1 / 4$ and $8 / 11$. First, add the fractions: $1 / 4+8 / 11=11 / 44+32 / 44=43 / 44$. Now divide the answer by two: $43 / 44 \div 2=43 / 44 \div 2 / 1$ $=43 / 44 \times 1 / 2=43 / 88$.

9C. The combined fraction of students who were out sick or arrived late was $1 / 3+2 / 7=7 / 21+6 / 21=$ $13 / 21$. The rest of the students arrived to class on time. Thus, $8 / 21$ of all the students arrived on time.

10B. The smallest fraction will have the smallest numerator (smallest m) and the biggest denominator (biggest p). The smallest value of m is 12 and the biggest value of p is 29 . The smallest value of the fraction is $12 / 29$.

11A. Black cars $=4 / 15$ of $60=4 / 15 \times 60=16$. White cars $=1 / 4$ of $60=1 / 4 \times 60=15$. Gray cars $=$ $7 / 20 \times 60=21$. This means that $16+15+21=52$ cars are either black, white or gray. The rest of the cars ($60-52=8$ cars) are not those colors.

12A. We will give all the values 5 decimal places:
$0.65599 \rightarrow 0.65599$
$0 . \overline{65} \rightarrow 0.65656$
$33 / 50 \rightarrow 0.66000$
$0 . \overline{6} \rightarrow 0.66666$
13D. We will give all the values 5 decimal places:
234/625 $\rightarrow 0.37440$
$0.37 \overline{4} \rightarrow 0.37444$
$3 / 8 \rightarrow 0.37500$
$19 / 50 \rightarrow 0.38000$
$2 / 5 \quad \rightarrow 0.40000$
14E. To solve the problem, we can turn the top into a single fraction and then divide by 3 .
TOP: $7 / 3+11 / 6=14 / 6+11 / 6=25 / 6$
Now divide by three: $25 / 6 \div 3 / 1=25 / 6 \times 1 / 3=$ $25 / 18$. A second way to solve the problem is to multiply the entire fraction by the LCD of all the fractions, which is 6 . Make sure you change the mixed numbers to improper fractions before multiplying:
$\frac{6(7 / 3)+6(11 / 6)}{6(3)}=\frac{14+11}{18}=25 / 18$.

15D. The combined fraction of boxes that were large or medium were $1 / 12+1 / 8=2 / 24+3 / 24=5 / 24$. The rest of the boxes were small-sized boxes. Thus, $19 / 24$ of all the boxes were small-sized.

16A. The hard way to do this problem is to use common denominators and subtract the mixed numbers from 4 to find Laura's share of the candy. We will change all the mixed numbers to decimals and compare: John $=11 / 4=1.25$ pounds, Maxine $=11 / 3$ $=1.33$ pounds and Laura $=4-1.25-1.33 \approx 1.42$ pounds. It should now be easier to compare them.

17C. This is a multi-step problem. First find how many pounds of chicken you can buy. You can buy $\$ 11.70 \div$ $\$ 1.30=9$ pounds of chicken. Each serving is $3 / 4$ of a pound, so we need to divide 9 pounds by $3 / 4$. When you divide, the total comes first and how you split the total comes second (9 is the total pounds and you are splitting into $3 / 4$-pound servings.) Now divide: $9 \div 3 / 4=9 / 1 \times 4 / 3=36 / 3=12$ servings.

18A. Number of lawyers $=4 / 7$ of $35=4 / 7 \times 35=20$. Now $2 / 5$ of those 20 lawyers are female. The number of female lawyers $=2 / 5$ of $20=2 / 5 \times 20=8$. There are 8 female lawyers in the room.

19B. They want the answer in minutes. Two hours is the same as 120 minutes. Now breakdown the problem: Showering $=1 / 8$ of $120=1 / 8 \times 120=15$. Dinner $=1 / 4$ of $120=1 / 4 \times 120=30$.
Homework $=4 / 15$ of $120=4 / 15 \times 120=32$. The total time spent doing those activities were $15+$ $30+32=77$ minutes. The rest of the time that was spent on the phone was $120-77=43$ minutes.

20E. Changing all the fractions to decimals will show that $3 / 14$ is the smallest fraction and $5 / 6$ is the biggest fraction. Now subtract the fractions:
$5 / 6-3 / 14=35 / 42-9 / 42=26 / 42=13 / 21$.
21D. We will give all the values 4 decimal places:
$0 . \overline{79} \quad \rightarrow 0.7979$
$799 / 1000 \rightarrow 0.7990$
$0.7 \overline{9} \rightarrow 0.7999$
$4 / 5 \quad \rightarrow 0.8000$
22C. To get the value of X, just add $32 / 7$ and $21 / 3$ and subtract the answer from $71 / 7$. First add the mixed numbers: $23 / 7+7 / 3=69 / 21+49 / 21=118 / 21$.
Now subtract the answer from 7 1/7: 50/7-118/21
$=150 / 21-118 / 21=32 / 21=111 / 21$.

